Waves					
Harmonic Progression	$y(x,t) = A\sin(kx - \omega t + \phi)$				
Speed of Wave	$v = \frac{\omega}{k} = \frac{\lambda}{T} = \lambda f$				
Speed of Particle	$V_P = A\omega \cos(\omega t + kx)$ $(V_P)_{max} = Akv$ v = speed of wave				
Speed of Longitudinal Wave in gas $T = Temperature$ $\rho = Density$		$v = \sqrt{\frac{\gamma p}{\rho}} = \sqrt{\frac{RT}{M}}$			
Speed of Transverse Wave $T = Tension in String$ $\mu = mass per unit length$ $\eta = modulus of Rigidity$		$v = \sqrt{\frac{T}{\mu}} = \sqrt{\frac{\eta}{\rho}}$			
Speed of Transverse Wave at a point x		$v_x = \sqrt{gx}$			
Acceleration of a Transverse Wave going up Vertical Plane		$a_{wave} = \frac{g}{2}$			
Relation between Phase difference, Path difference and Time difference		$\frac{2\pi}{\Delta\phi} = \frac{\lambda}{\Delta x} = \frac{T}{\Delta t}$			

Speed of Sound						
Newton's Formula		Corre	ace's ection utdinal)	$v = \sqrt{\frac{\gamma P}{\rho}}$		
Effect of Temperature on Speed of Sound		$v_t = v_0 + 0.61t$				
Principle of Superposition of Wave	Two or more progressive waves can travel simultaneously in the medium without effecting the motion of one another					
	Equation of Stationary Wave		$y = 2a \sin \frac{2\pi t}{T} \cos \frac{2\pi x}{\lambda}$			
Position of Nodes		$x = \frac{n\lambda}{2}$				
Properties	Reflected		Refracted/Transmitted			
Velocity	Same alway	Same always		from Rarer → Denser (speed ↓)		
Frequency	Same		Same			
Wavelength	Same	Same		$V = \lambda f$ (f is same)		
Phase	from Denser there is phase difference of π		No change			
(4)						

Sonometer Wire/Open Organpipe

$$f = \frac{nV}{2L} = \frac{n}{2L} \sqrt{\frac{T}{\mu}} = \frac{n}{2L} \sqrt{\frac{\gamma P}{\rho}}$$

1 st Harmonic						
Fundamental Frequen	cy					

$$f_1 = \frac{V}{2L}$$

$$f_1 = \frac{V}{L}$$

$$f_1 = \frac{3V}{2L}$$

Closed Organpipe

$$f=\frac{(2n-1)V}{4L}$$

$$f = \frac{3V}{4L}$$

$$e = \frac{l_2 - 3l_1}{2}$$

If,
$$l_1 = l$$
; Then, $l_2 = 3l$

Doppler Effect

When Source is moving, Observer at rest

Towards observer

$$f' = f\left(\frac{v}{v - v_s}\right)$$

Away from Observer

$$f' = f\left(\frac{v}{v + v_s}\right)$$

When Source is at rest, Observer is moving

Towards source

$$f' = f\left(\frac{v + v_o}{v}\right)$$

$$f' = f\left(\frac{v - v_o}{v}\right)$$

When Source and Observer both are moving

a. Both moving in direction of sound

$$f' = f\left(\frac{v - v_o}{v - v_s}\right)$$

b. Both moving oppsite to direction of sound

$$f' = f\left(\frac{v + v_o}{v + v_s}\right)$$

c. Both moving towards each other

$$f' = f\left(\frac{v + v_o}{v - v_s}\right)$$

a. Both moving opposite to each other

$$f' = f\left(\frac{v - v_o}{v + v_s}\right)$$

